Edema is a topic covered in the Harrison's Manual of Medicine.

To view the entire topic, please or purchase a subscription.

Harrison’s Manual of Medicine 19th edition provides 600+ internal medicine topics in a rapid-access format. Download Harrison’s App to iPhone, iPad, and Android smartphone and tablet. Explore these free sample topics:

Harrison’s Manual of Medicine - App + Web

-- The first section of this topic is shown below --


Soft tissue swelling due to abnormal expansion of interstitial fluid volume. Edema fluid is a plasma transudate that accumulates when movement of fluid from vascular to interstitial space is favored. Because detectable generalized edema in the adult reflects a gain of ≥3 L, renal retention of salt and water is necessary for edema to occur. Distribution of edema can be an important guide to cause.

Localized Edema

Limited to a particular organ or vascular bed; easily distinguished from generalized edema. Unilateral extremity edema is usually due to venous or lymphatic obstruction (e.g., deep venous thrombosis, tumor obstruction, primary lymphedema). Stasis edema of a paralyzed lower extremity also may occur. Allergic reactions (“angioedema”) and superior vena caval obstruction are causes of localized facial edema. Bilateral lower-extremity edema may have localized causes, e.g., inferior vena caval obstruction, compression due to ascites, and abdominal mass. Ascites (fluid in peritoneal cavity) and hydrothorax (in pleural space) also may present as isolated localized edema, due to inflammation or neoplasm.

Generalized Edema

Soft tissue swelling of most or all regions of the body. Bilateral lower-extremity swelling, more pronounced after standing for several hours, and pulmonary edema are usually cardiac in origin. Periorbital edema noted on awakening often results from renal disease and impaired Na excretion. Ascites and edema of lower extremities and scrotum are frequent in cirrhosis, nephrotic syndrome, or CHF.

In CHF, diminished cardiac output and arterial underfilling result in both decreased renal perfusion and increased venous pressure with resultant renal Na retention due to renal vasoconstriction, intrarenal blood flow redistribution, direct Na-retentive effects of norepinephrine and angiotensin II, and secondary hyperaldosteronism.

In cirrhosis, arteriovenous shunts and peripheral vasodilation lower renal perfusion, resulting in Na retention. Ascites accumulates when increased intrahepatic vascular resistance produces portal hypertension. As in heart failure, the effects of excess intrarenal and circulating norepinephrine, angiotensin II, and aldosterone lead to renal Na retention and worsening edema. Reduced serum albumin and increased abdominal pressure also promote lower-extremity edema.

In acute or chronic renal failure, edema occurs if Na intake exceeds kidneys’ ability to excrete Na secondary to marked reductions in glomerular filtration. Severe hypoalbuminemia (<25 g/L [2.5 g/dL]) of any cause (e.g., nephrotic syndrome, nutritional deficiency, chronic liver disease) may lower plasma oncotic pressure, promoting fluid transudation into interstitium; lowering of effective blood volume stimulates renal Na retention and causes edema.

Less common causes of generalized edema: idiopathic edema, a syndrome of recurrent rapid weight gain and edema in women of reproductive age; hypothyroidism, in which myxedema is typically located in the pretibial region; drugs (Table 36-1).

Nonsteroidal anti-inflammatory drugs
Antihypertensive agents
 Direct arterial/arteriolar vasodilators
 Calcium channel antagonists
 α-Adrenergic antagonists
Steroid hormones
 Anabolic steroids
Growth hormone
 Interleukin 2
 OKT3 monoclonal antibody
Source: From GM Chertow, in E Braunwald, L Goldman (eds): Primary Cardiology, 2nd ed. Philadelphia, Saunders, 2003.

-- To view the remaining sections of this topic, please or purchase a subscription --