Chapter 132: Environmental Lung Diseases
To view the entire topic, please log in or purchase a subscription.
Harrison’s Manual of Medicine 20th edition provides 600+ internal medicine topics in a rapid-access format. Download Harrison’s App to iPhone, iPad, and Android smartphone and tablet. Explore these free sample topics:
-- The first section of this topic is shown below --
The susceptibility to develop many pulmonary diseases is influenced by environmental factors. This chapter will focus on occupational and toxic chemical exposures. However, a variety of nonoccupational indoor exposures such as environmental tobacco smoke exposure (lung cancer), radon gas (lung cancer), and biomass fuel cooking (chronic obstructive pulmonary disease [COPD]) also should be considered. Particle size is an important determinant of the impact of inhaled environmental exposures on the respiratory system. Particles >10 µm in diameter typically are captured by the upper airway. Particles 2.5–10 µm in diameter will likely deposit in the upper tracheobronchial tree, while smaller particles (including nanoparticles) will reach the alveoli. Water-soluble gases like ammonia are absorbed in the upper airways and produce irritative and bronchoconstrictive responses, while less water-soluble gases (e.g., phosgene) may reach the alveoli and cause a life-threatening acute chemical pneumonitis.
-- To view the remaining sections of this topic, please log in or purchase a subscription --
The susceptibility to develop many pulmonary diseases is influenced by environmental factors. This chapter will focus on occupational and toxic chemical exposures. However, a variety of nonoccupational indoor exposures such as environmental tobacco smoke exposure (lung cancer), radon gas (lung cancer), and biomass fuel cooking (chronic obstructive pulmonary disease [COPD]) also should be considered. Particle size is an important determinant of the impact of inhaled environmental exposures on the respiratory system. Particles >10 µm in diameter typically are captured by the upper airway. Particles 2.5–10 µm in diameter will likely deposit in the upper tracheobronchial tree, while smaller particles (including nanoparticles) will reach the alveoli. Water-soluble gases like ammonia are absorbed in the upper airways and produce irritative and bronchoconstrictive responses, while less water-soluble gases (e.g., phosgene) may reach the alveoli and cause a life-threatening acute chemical pneumonitis.
There's more to see -- the rest of this topic is available only to subscribers.