Harrison's Manual of Medicine

HIV Infection and AIDS


AIDS was originally defined empirically by the Centers for Disease Control and Prevention (CDC) as “the presence of a reliably diagnosed disease that is at least moderately indicative of an underlying defect in cell-mediated immunity in the absence of any known cause for such a defect.” Following the recognition of the causative virus, HIV, and the development of sensitive and specific tests for HIV infection, the definition of AIDS has undergone substantial revision. The current surveillance definition categorizes HIV-infected persons on the basis of clinical conditions associated with HIV infection and CD4+ T lymphocyte counts (Tables 226-1, and 226-2, pp. 1215 and 1216, in HPIM-19). From a practical standpoint, the clinician should view HIV disease as a spectrum of disorders ranging from primary infection, with or without the acute HIV syndrome, to the asymptomatic infected state, to advanced disease characterized by opportunisitic infections and neoplasms.


AIDS is caused by infection with the human retroviruses HIV-1 or 2. HIV-1 is the most common cause worldwide. These viruses are passed through sexual contact; through transfusion of contaminated blood or blood products; through sharing of contaminated needles and syringes among injection drug users; intrapartum or perinatally from mother to infant; or via breast milk. There is no evidence that the virus can be passed through casual or family contact or by insects such as mosquitoes. There is a definite, though small, occupational risk of infection for health care workers and laboratory personnel who work with HIV-infected specimens. The risk of transmission of HIV from an infected health care worker to his or her pts through invasive procedures is extremely low.


As of January 1, 2014, an estimated 1,194,039 cumulative cases of AIDS had been diagnosed in the United States; approximately 660,000 people with an AIDS diagnosis have died. However, the death rate from AIDS has decreased substantially over the past two decades, primarily due to the increased use of effective antiretroviral drugs. Currently, an estimated 1.2 million people are living with HIV infection in the United States; approximately 13% of these individuals are unaware that they are infected. An estimated 50,000 individuals are newly infected each year in the United States; this figure has remained stable for at least 15 years. Among adults and adolescents newly diagnosed with HIV infection in 2013, ~80% were men and ~20% were women. Of new HIV/AIDS diagnoses among men, ~81% were due to male-to-male sexual contact, ~10% to heterosexual contact, and ~5% to injection drug use. Among women, ~87% were due to heterosexual contact and ~12% to injection drug use. HIV infection/AIDS is a global pandemic, especially in developing countries. At the end of 2014, the estimated number of cases of HIV infection worldwide was ~36.9 million, more than two-thirds of which were in sub-Saharan Africa; ~47% of cases were in women and 2.6 million were in children. In 2014, there were 2 million new HIV infections worldwide and 1.2 million deaths.


The hallmark of HIV disease is a profound immunodeficiency resulting from a progressive quantitative and qualitative deficiency of the subset of T lymphocytes referred to as helper T cells that are defined phenotypically by the expression on the cell surface of the CD4 molecule, which serves as the primary cellular receptor for HIV. A co-receptor must be present with CD4 for efficient entry of HIV-1 into target cells. The two major co-receptors for HIV-1 are the chemokine receptors CCR5 and CXCR4. The CD4+ T lymphocyte and cells of monocyte lineage are the principal cellular targets of HIV.

Primary Infection

Following initial transmission, the virus infects CD4+ cells, probably T lymphocytes, monocytes, or bone marrow–derived dendritic cells. Both during this initial stage and later in infection, the lymphoid system is a major site for the establishment and propagation of HIV infection. The gut-associated lymphoid tissue (GALT) plays a role in the establishment of infection and in the early depletion of memory CD4+ T cells.

Essentially all pts undergo a viremic stage during primary infection; in some pts this is associated with the “acute retroviral syndrome,” a mononucleosis-like illness (see below). This phase is important in disseminating virus to lymphoid and other organs throughout the body, and it is ultimately contained only partially by the development of an HIV-specific immune response.

Establishment of Chronic and Persistent Infection

Despite the robust immune response that is mounted following primary infection, the virus is not cleared from the body. Instead, a chronic infection develops that persists for a median time of 10 years before the untreated pt becomes clinically ill. During this period of clinical latency, the number of CD4+ T cells gradually declines, but few, if any, clinical signs and symptoms may be evident. However, active viral replication can almost always be detected by as plasma viremia and the demonstration of virus replication in lymphoid tissue. The level of steady-state viremia (referred to as the viral set point) at ~6 months to 1 year postinfection has important prognostic implications for the progression of HIV disease; individuals with a low viral set point at 6 months to 1 year after infection progress to AIDS more slowly than do those whose set point is very high at this time (Fig. 226-22, p. 1231, in HPIM-19).

Advanced HIV Disease

In untreated pts or in pts in whom therapy has not controlled viral replication (see below), after some period of time (often years), CD4+ T cell counts will fall below a critical level (~200/μL) and pts become highly susceptible to opportunistic diseases. The presence of a CD4+ T cell count of <200/μL or an AIDS-defining opportunistic disease establishes a diagnosis of AIDS. Control of plasma viremia by effective antiretroviral therapy, particularly maintaining the plasma viral load consistently at <50 copies of RNA per mL, even in individuals with low CD4+ T cell counts, has dramatically increased survival in these pts, including those whose CD4+ T cell counts may not increase significantly as a result of therapy.


A broad range of immune abnormalities has been documented in HIV-infected pts, resulting in varying degrees of immunodeficiency. These include both quantitative and qualitative defects in lymphocytes, and qualitative defects in monocyte/macrophage and natural killer (NK) cell function. Autoimmune phenomena also have been observed in HIV-infected individuals.


Both humoral and cellular immune responses to HIV develop soon after primary infection (see summary in Table 226-7 and Fig. 226-26, p. 1243, in HPIM-19). Humoral responses include antibodies with HIV binding and neutralizing activity, as well as antibodies participating in antibody-dependent cellular cytotoxicity (ADCC). Cellular immune responses include the generation of HIV-specific CD4+ and CD8+ T lymphocytes, as well as NK cells and mononuclear cells mediating ADCC. CD8+ T lymphocytes may also suppress HIV replication in a noncytolytic, non-MHC-restricted manner. This effect is mediated by soluble factors such as the CC-chemokines RANTES, MIP-1α, and MIP-1β. For the most part, the natural immune response to HIV is not adequate. Broadly reacting neutralizing antibodies against HIV are not easily generated in infected individuals, and eradication of the virus from infected individuals by naturally occurring immune responses has not been reported.


Laboratory diagnosis of HIV infection depends on the demonstration of anti-HIV antibodies and/or the detection of HIV or one of its components.

The standard screening test for HIV infection is the detection of anti-HIV antibodies using an enzyme immunoassay (EIA). This test is highly sensitive (>99.5%) and is quite specific. Most commercial EIA kits are able to detect antibodies to both HIV-1 and 2 and many also detect the HIV core antigen p24. The Western blot detects antibodies to HIV antigens of specific molecular weights. Antibodies to HIV begin to appear within 2 weeks of infection, and the period of time between initial infection and the development of detectable antibodies is rarely >3 months. Plasma p24 antigen levels rise during the first few weeks following infection, prior to the appearance of anti-HIV antibodies. A guideline for the use of these serologic tests in the diagnosis of HIV infection is depicted in Fig. 105-1.

HIV can be cultured directly from tissue, peripheral blood cells, or plasma, but this is most commonly done in a research setting. HIV genetic material can be detected using reverse transcriptase PCR (RT-PCR), branched DNA (bDNA), or nucleic acid sequence–based assay (NASBA). These tests are useful in pts with a positive or indeterminate EIA and an indeterminate Western blot. They turn positive early in infection and will usually be positive in pts in whom serologic testing may be unreliable (such as those with hypogammaglobulinemia).

FIGURE 105-1

Algorithm for the use of serologic tests in the diagnosis of HIV-1 or HIV-2 infection.


Measurement of the CD4+ T cell count and level of plasma HIV RNA are important parts of the routine evaluation and monitoring of HIV-infected individuals. The CD4+ T cell count is a generally accepted indicator of the immunologic competence of the pt with HIV infection, and there is a close relationship between the CD4+ T cell count and the clinical manifestations of AIDS (Fig. 226-31, p. 1248, in HPIM-19). Pts with CD4+ T cell counts <200/μL are at higher risk of infection with Pneumocystis jiroveci. Once the count declines to <50/μL, pts are also at higher risk for developing CMV disease and infection with Mycobacterium avium intracellulare. Pts should have their CD4+ T cell count measured at the time of diagnosis and every 3–6 months thereafter. (Measurements may be done more frequently in pts with declining counts.) While the CD4+ T cell count provides information on the current immunologic status of the pt, the HIV RNA level predicts what will happen to the CD4+ T cell count in the near future. Measurements of plasma HIV RNA levels should be made at the time of HIV diagnosis and every 3–4 months thereafter in the untreated pt. Measurement of plasma HIV RNA is also useful in making therapeutic decisions about antiretroviral therapy (see below). Following the initiation of therapy or any change in therapy, HIV RNA levels should be monitored approximately every 4 weeks until the effectiveness of the therapeutic regimen is determined by the development of a new steady-state level of HIV RNA. During therapy, levels of HIV RNA should be monitored every 3–6 months to evaluate the continuing effectiveness of therapy.

The sensitivity of an individual’s HIV virus(es) to different antiretroviral agents can be tested by either genotypic or phenotypic assays. In the hands of experts, the use of resistance testing to select a new antiretroviral regimen in pts failing their current regimen leads to a ~0.5-log greater decline in viral load compared with the efficacy of regimens selected solely on the basis of drug history. HIV resistance testing may also be of value in selecting an initial treatment regimen in geographic areas with a high prevalence of baseline resistance.


A complete discussion is beyond the scope of this chapter. The major clinical features of the various stages of HIV infection are summarized below (See Also Chap. 226, HPIM-19).

Acute HIV (Retroviral) Syndrome

Approximately 50–70% of infected individuals experience an acute syndrome following primary infection. The acute syndrome follows infection by 3–6 weeks. It can have multiple clinical features (Table 105-1), lasts 1–2 weeks, and resolves spontaneously as an immune response to HIV develops and the viral load diminishes from its peak levels. Most pts will then enter a phase of clinical latency, although an occasional pt will experience rapidly progressive immunologic and clinical deterioration.

 Fever Meningitis
 Pharyngitis Encephalitis
 Lymphadenopathy Peripheral neuropathy
 Headache/retroorbital pain Myelopathy
 Lethargy/malaise Erythematous maculopapular rash
 Anorexia/weight loss Mucocutaneous ulceration
Source: From B Tindall, DA Cooper: AIDS 5:1, 1991.

Asymptomatic Infection

The length of time between HIV infection and development of disease in untreated individuals varies greatly, but the median is estimated to be 10 years. HIV disease with active viral replication usually progresses during this asymptomatic period, and, in the absence of combination antiretroviral therapy (cART) CD4+ T cell counts fall. The rate of disease progression is directly correlated with plasma HIV RNA levels. Pts with high levels of HIV RNA progress to symptomatic disease faster than to those with low levels of HIV RNA.

Symptomatic Disease

Symptoms of HIV disease can develop at any time during the course of HIV infection. In general, the spectrum of illness changes as the CD4+ T cell count declines. The more severe and life-threatening complications of HIV infection occur in pts with CD4+ T cell counts <200/μL. Overall, the clinical spectrum of HIV disease is constantly changing as pts live longer and new and better approaches to treatment and prophylaxis of opportunistic infections are developed. In addition, a variety of neurologic, cardiovascular, renal, metabolic, and hepatic problems are increasingly seen in pts with HIV infection and may be a direct consequence of HIV infection. The key element to treating symptomatic complications of HIV disease, whether primary or secondary, is achieving good control of HIV replication through the use of cARTand instituting primary and secondary prophylaxis as indicated. Major clinical syndromes seen in the symptomatic stage of HIV infection are summarized below.

  • Persistent generalized lymphadenopathy: Palpable adenopathy at two or more extrainguinal sites that persists for >3 months without explanation other than HIV infection. Many pts will go on to disease progression.
  • Constitutional symptoms: Fever persisting for >1 month, involuntary weight loss of >10% of baseline, diarrhea for >1 month in absence of explainable cause.
  • Neurologic disease: Most common is HIV-associated neurocognitive disease (HAND); other neurologic complications include opportunistic infections such as toxoplasmosis and cryptococcal menigitis, primary CNS lymphoma, CNS Kaposi’s sarcoma, aseptic meningitis, myelopathy, peripheral neuropathy, and myopathy.
  • Secondary infectious diseases: Common secondary infectious agents include P. jiroveci (pneumonia), CMV (chorioretinitis, colitis, pneumonitis, adrenalitis), Candida albicans (oral thrush, esophagitis), M. avium intracellulare (localized or disseminated infection), M. tuberculosis (pulmonary or disseminated), Cryptococcus neoformans (meningitis, disseminated disease), Toxoplasma gondii (encephalitis, intracerebral mass lesion), herpes simplex virus (severe mucocutaneous lesions, esophagitis), Cryptosporidium spp. or Isospora belli (diarrhea), JC virus (progressive multifocal leukoencephalopathy), bacterial pathogens (pneumonia, sinusitis, skin).
  • Secondary neoplasms: Kaposi’s sarcoma (cutaneous and visceral, more fulminant course than in non-HIV-infected pts), lymphoma (primarily B cell, may be CNS or systemic). Kaposi’s sarcoma, body cavity lymphomas and multicentric Castleman’s disease are associated witih HHV-8 infection while the B cell lymphomas are often associated with EBV.
  • Other diseases: A variety of organ-specific syndromes can be seen in HIV-infected pts, either as primary manifestations of the HIV infection or as complications of treatment. Diseases commonly associated with aging are also seen with an increased frequency in pts with HIV infection.

Prophylaxis against Secondary Infections

(See Also Table 226-11, pp. 1251–1253, in HPIM-19)

Primary prophylaxis is clearly indicated for P. jiroveci pneumonia (especially when CD4+ T cell counts fall to <200 cells/μL), for M. avium complex infections in pts with CD4+ T cell counts <50 cells/μL, and for M. tuberculosis infections in pts with a positive PPD or anergy if at high risk of TB. Vaccination with the influenza and pneumococcal polysaccharide vaccines is generally recommended for all pts and may need to be repeated in pts with CD4+ T cell counts <200/μL when their counts increase to >200/μL. Secondary prophylaxis, when available, is indicated for virtually every infection experienced by HIV-infected pts until they have significant immunologic recovery.


General principles of pt management include counseling, psychosocial support, and screening for infections and other conditions and require comprehensive knowledge of the disease processes associated with HIV infection.

ANTIRETROVIRAL THERAPY (See TABLE 105-2) The cornerstone of medical management of HIV infection is combination antiretroviral therapy, or cART. Suppression of HIV replication is an important component in prolonging life as well as in improving the quality of life of pts with HIV infection. Data from observational studies and randomized controlled trials have demonstrated that cART is of benefit to the pt at any stage of HIV infection and is also associated with a decreased risk of transmitting infection to an uninfected partner. However, several important questions related to the treatment of HIV disease lack definitive answers. Among them are what is the best initial cART regimen, when should a given regimen be changed, and which drugs in a regimen should be changed when a change is made. The drugs that are currently licensed for the treatment of HIV infection are listed in Table 105-2. These drugs fall into four main categories: those that inhibit the viral reverse transcriptase enzyme, those that inhibit the viral protease enzyme, those that inhibit viral entry, and those that inhibit the viral integrase. In addition, more than a dozen combination drugs that combine 2 or more agents have been licensed (Table 105-2A). There are numerous drug–drug interactions that must be taken into consideration when using antiretroviral medications.

Nucleoside/Nucleotide Analogues These agents act by causing premature DNA-chain termination during the reverse transcription of viral RNA to proviral DNA and should be used in combination with other antiretroviral agents. The most common usage is together with another nucleoside/nucleotide analogue and a nonnucleoside reverse transcriptase inhibitor or a protease inhibitor (see below).

Nonnucleoside Reverse Transcriptase Inhibitors These agents interfere with the function of HIV-1 reverse transcriptase by binding to regions outside the active site and causing conformational changes in the enzyme that render it inactive. These agents are very potent; however, when they are used as monotherapy, they result in the rapid emergence of drug-resistant mutants. Five members of this class, nevirapine, delavirdine, efavirenz, etravirine, and rilpivirine are currently available for clinical use. These drugs are licensed for use in combination with other antiretrovirals.

Protease Inhibitors These drugs are potent and selective inhibitors of the HIV-1 protease enzyme and are active in the nanomolar range. Unfortunately, as in the case of the nonnucleoside reverse transcriptase inhibitors, this potency is accompanied by the rapid emergence of resistant isolates when these drugs are used as monotherapy. Thus, the protease inhibitors should be used only in combination with other antiretroviral drugs.

HIV Entry Inhibitors These agents act by interfering with the binding of HIV to its receptor or co-receptor or by interfering with the process of fusion. A variety of small molecules that bind to HIV-1 co-receptors are currently in clinical trials. The first drugs in this class to be licensed are the fusion inhibitor enfuvirtide and the entry inhibitor maraviroc.

HIV Integrase Inhibitors These drugs interfere with the integration of proviral DNA into the host cell genome. The first agent in this class, raltegravir, was approved in 2007 for use in treatment-experienced pts. Two other integrase inhibitors, dolutegravir and elvitegravir, are also licensed.

Choice of Antiretroviral Treatment Strategy The large number of available antiretroviral agents makes the subject of antiretroviral therapy one of the more complicated in the management of HIV-infected pts.

The principles of therapy for HIV infection have been articulated by a panel sponsored by the U.S. Department of Health and Human Services (Table 105-3). Treatment decisions must take into account the fact that one is dealing with a chronic infection and that complete eradication of HIV infection has not been achieved with currently available cART regimens. Thus, therapeutic decisions must take into account the balance between risks and benefits. At present most guidelines recommend cART for anyone with a diagnosis of HIV infection. In addition, one may wish to administer a 4-week course of therapy to uninfected individuals immediately following a high-risk exposure to HIV (see below).

When the decision to initiate therapy is made, the physician must decide which drugs to use in the initial regimen. The options for initial therapy most commonly in use today are (1) two nucleoside/nucleotide analogues (one of which is usually tenofovir or abacavir, and the other of which is usually lamivudine or emtricitabine) combined with an integrase inhibitor; (2) two nucleoside/nucleotide analogues and a protease inhibitor; or (3) two nucleoside/nucleotide analogues and a nonnucleoside reverse transcriptase inhibitor. There are no clear data at present on which to base a distinction between these approaches.

Following the initiation of therapy, one should expect a 1-log (tenfold) reduction in plasma HIV RNA within 1–2 months; eventually a decline in plasma HIV RNA to <50 copies/mL; and a rise in CD4+ T cell count of 100–150/μL during the first year. Failure to achieve and maintain an HIV RNA level <50 copies/mL is an indication to consider a change in therapy. Other reasons for changing therapy are listed in Table 105-4. When changing therapy because of treatment failure, it is important to attempt to provide a regimen with at least two new drugs. In the pt in whom a change is made for reasons of drug toxicity, a simple replacement of one drug is reasonable.

Treatment of Secondary Infections and Neoplasms Specific for each infection and neoplasm (see Chap. 226, in HPIM-19).

DrugStatusIndicationDose in CombinationSupporting DataToxicity
Nucleoside or Nucleotide Reverse Transcriptase Inhibitors
Zidovudine (AZT, azidothymidine, Retrovir, 3′azido-3′-deoxythymidine)LicensedTreatment of HIV infection in combination with other antiretroviral agents200 mg q8h or 300 mg bid19 vs 1 death in original placebo-controlled trial in 281 patients with AIDS or ARCAnemia, granulocytopenia, myopathy, lactic acidosis, hepatomegaly with steatosis, headache, nausea, nail pigmentation, lipid abnormalities, lipoatrophy, hyperglycemia
  Prevention of maternal-fetal HIV transmission In pregnant women with CD4+ T cell count ≥200/μL, AZT PO beginning at weeks 14–34 of gestation plus IV drug during labor and delivery plus PO AZT to infant for 6 weeks decreased transmission of HIV by 67.5% (from 25.5% to 8.3%), n = 363 
Lamivudine (Epivir, 2′3′-dideoxy-3′-thiacytidine, 3TC)LicensedIn combination with other antiretroviral agents for the treatment of HIV infection

150 mg bid

300 mg qd

In combination with AZT superior to AZT alone with respect to changes in CD4+ T cell counts in 495 patients who were zidovudine-naïve and 477 patients who were zidovudine-experienced; overall CD4+ T cell counts for the zidovudine group were at baseline by 24 weeks, while in the group treated with zidovudine plus lamivudine, they were 10–50 cells/μL above baseline; 54% decrease in progression to AIDS/death compared with AZT aloneFlare of hepatitis in HBV-co-infected patients who discontinue drug
Emtricitabine (FTC, Emtriva)LicensedIn combination with other antiretroviral agents for the treatment of HIV infection200 mg qdComparable to stavudine in combination with didanosine and efavirenz in 571 treatment-naïve patients; similar to 3TC in combination with AZT or stavudine + NNRTI or PI in 440 patients doing well for ≥12 weeks on a 3TC regimenHepatotoxicity in HBV-co-infected patients who discontinue drug, skin discoloration
Abacavir (Ziagen)LicensedFor treatment of HIV infection in combination with other antiretroviral agents300 mg bidAbacavir + AZT + 3TC equivalent to indinavir + AZT + 3TC with regard to viral load suppression (~60% in each group with <400 HIV RNA copies/mL plasma) and CD4+ T cell increase (~100/μL in each group) at 24 weeksHypersensitivity reaction In HLA-B5701+ individuals (can be fatal); fever, rash, nausea, vomiting, malaise or fatigue, and loss of appetite
Tenofovir (Viread)LicensedFor use in combination with other antiretroviral agents when treatment is indicated300 mg qdReduction of ~0.6 log in HIV-1 RNA levels when added to background regimen in treatment-experienced patientsRenal, osteomalacia, flare of hepatitis in HBV-co-infected patients who discontinue drug
Non-Nucleoside Reverse Transcriptase Inhibitors
Nevirapine (Viramune)LicensedIn combination with other antiretroviral agents for treatment of progressive HIV infection

200 mg/d × 14 days then 200 mg bid


400 mg extended release qd

Increase in CD4+ T cell count, decrease in HIV RNA when used in combination with nucleosidesSkin rash, hepatotoxicity
Efavirenz (Sustiva)LicensedFor treatment of HIV infection in combination with other antiretroviral agents600 mg qhsEfavirenz + AZT + 3TC comparable to indinavir + AZT + 3TC with regard to viral load suppression (a higher percentage of the efavirenz group achieved viral load <50 copies/mL, but the discontinuation rate in the indinavir group was unexpectedly high, accounting for most treatment “failures”); CD4 cell increase (~140/μL in each group) at 24 weeksRash, dysphoria, elevated liver function tests, drowsiness, abnormal dreams, depression, lipid abnormalities, potentially teratogenic
Etravirine (Intelence)LicensedIn combination with other antiretroviral agents in treatment-experienced patients whose HIV is resistant to nonnucleoside reverse transcriptase inhibitors and other antiretroviral medications200 mg bidHigher rates of HIV RNA suppression to <50 copies/mL (56% vs 39%); greater increases in CD4+ T cell count (89 vs 64 cells) compared to placebo when given in combination with an optimized background regimenRash, nausea, hypersensitivity reactions
Rilpivirine (Edurant)LicensedIn combination with other drugs in previously untreated patients when treatment is indicated.25 mg qdNoninferior to efavirenz with respect to suppression at week 48 in 1368 treatment-naive individuals except in patients with pretherapy HIV RNA levels >100,000 where it was inferiorNausea, dizziness, somnolence, vertigo, less CNS toxicity and rash than Efavirenz
Protease Inhibitors

Ritonavir (Norvir)


In combination with other antiretroviral agents for treatment of HIV infection when treatment is warranted

600 mg bid (also used in lower doses as pharmacokinetic booster)

Reduction in the cumulative incidence of clinical progression or death from 34% to 17% in patients with CD4+ T cell count <100/μL treated for a median of 6 months

Nausea, abdominal pain, hyperglycemia, fat redistribution, lipid abnormalities, may alter levels of many other drugs, paresthesias, hepatitis

Atazanavir (Reyataz)


For treatment of HIV infection in combination with other antiretroviral agents

400 mg qd or300 mg qd + ritonavir100 mg qd when given with efavirenz

Comparable to efavirenz when given in combination with AZT + 3TC in a study of 810 treatment-naïve patients; comparable to nelfinavir when given in combination with stavudine + 3TC in a study of 467 treatment-naïve patients

Hyperbilirubinemia, PR prolongation, nausea, vomiting, hyperglycemia, fat maldistribution, rash transaminase elevations, renal stones

Darunavir (Prezista)LicensedIn combination with 100 mg ritonavir for combination therapy in treatment-experienced adults600 mg + 100 mg ritonavir twice daily with foodAt 24 weeks, patients with prior extensive exposure to antiretrovirals treated with a new combination including darunavir showed a –1.89-log change in HIV RNA levels and a 92-cell increase in CD4+ T cells compared with –0.48 log and 17 cells in the control armDiarrhea, nausea, headache, skin rash, hepatotoxicity, hyperlipidemia, hyperglycemia
Entry Inhibitors
Enfuvirtide (Fuzeon)LicensedIn combination with other agents in treatment-experienced patients with evidence of HIV-1 replication despite ongoing anti-retroviral therapy90 mg SC bidIn treatment of experienced patients, superior to placebo when added to new optimized background (37% vs 16% with <400 HIV RNA copies/mL at 24 weeks; + 71 vs + 35 CD4+ T cells at 24 weeks)Local injection reactions, hypersensitivity reactions, increased rate of bacterial pneumonia
Maraviroc (Selzentry)LicensedIn combination with other antiretroviral agents in adults infected with only CCR5-tropic HIV-1150–600 mg bid depending on concomitant medications (see text)At 24 weeks, among 635 patients with CCR5-tropic virus and HIV-1 RNA >5000 copies/mL despite at least 6 months of prior therapy with at least 1 agent from 3 of the 4 antiretroviral drug classes, 61% of patients randomized to maraviroc achieved HIV RNA levels <400 copies/mL compared with 28% of patients randomized to placeboHepatotoxicity, nasopharyngitis, fever, cough, rash, abdominal pain, dizziness, musculoskeletal symptoms
Integrase Inhibitor
Raltegravir (Isentress)LicensedIn combination with other antiretroviral agents400 mg bidAt 24 weeks, among 436 patients with 3-class drug resistance, 76% of patients randomized to receive raltegravir achieved HIV RNA levels <400 copies/mL compared with 41% of patients randomized to receive placeboNausea, headache, diarrhea, CPK elevation, muscle weakness, rhabdomyolysis



In combination with other antiretroviral agents

1 tablet daily

Noninferior to raltegravir or atazanavir/ritonavir in treatment-experienced patients.

Diarrhea, nausea, upper respiratory infections, headache

Dolutegravir (Tivicay)


In combination with other antiretroviral agents

50 mg daily for treatment-naïve patients; 50 mg twice daily for treatment-experienced patients or those also receiving efavirenz or rifampin

Noninferior to raltegravir, superior to efavirenz or darunavir/ritonavir

Insomnia, headache, hypersensitivity reactions, hepatotoxicity

Abbreviations: ARC, AIDS-related complex; NRTIs, nonnucleoside reverse transcriptase inhibitors.
Drug NameComponentsDrug NameComponents
AtriplaEfavireniz, tenofovir DF (TDF), emtricitabineOdefseyRilpivirine, TAF, emtricitabine
CombivirZidovudine, lamivudinePrezcobixDarunavir–cobicistat
CompleraRilpivirine, TDF, emtricitabineStribildElvitegravir-cobicistat, TDF, emtricitabine
EpzicomAbacavir, lamivudineTriumeqDolutegravir, abacavir, lamivudine
EvotazAtazanavir–cobicistatTrizivirAbacavir, zidovudine, lamivudine
GenvoyaElvitegravir-cobicistat, tenofovir alafenamide (TAF), emtricitabineTruvadaTDF, emtricitabine
Source: AIDSinfo Drug Database, https://aidsinfo.nih.gov/drugs.
  1. Ongoing HIV replication leads to immune system damage and progression to AIDS.
  2. Plasma HIV RNA levels indicate the magnitude of HIV replication and the rate of CD4+ T cell destruction. CD4+ T cell counts indicate the current level of competence of the immune system.
  3. Rates of disease progression differ among individuals, and treatment decisions should be individualized based on plasma HIV RNA levels and CD4+ T cell counts.
  4. Maximal suppression of viral replication is a goal of therapy; the greater the suppression the less likely the appearance of drug-resistant quasispecies.
  5. The most effective therapeutic strategies involve the simultaneous initiation of combinations of effective anti-HIV drugs with which the pt has not been previously treated and that are not cross-resistant with antiretroviral agents that the pt has already received.
  6. The antiretroviral drugs used in combination regimens should be used according to optimum schedules and dosages.
  7. The number of available drugs is limited. Any decisions on antiretroviral therapy have a long-term impact on future options for the pt.
  8. Women should receive optimal antiretroviral therapy regardless of pregnancy status.
  9. The same principles apply to children and adults. The treatment of HIV-infected children involves unique pharmacologic, virologic, and immunologic considerations.
  10. 10. Compliance is an important part of ensuring maximal effect from a given regimen. The simpler the regimen, the easier it is for the pt to be compliant.
Source: Modified from Principles of Therapy of HIV Infection, USPHS, and the Henry J. Kaiser Family Foundation.
Less than a 1-log drop in plasma HIV RNA by 4 weeks following the initiation of therapy
A reproducible significant increase (defined as threefold or greater) from the nadir of plasma HIV RNA level not attributable to intercurrent infection, vaccination, or test methodology
Persistently declining CD4+ T cell numbers
Clinical deterioration
Side effects
aGenerally speaking, a change should involve the initiation of at least two drugs felt to be effective in the given pt. The exception to this is when change is being made to manage toxicity, in which case a single substitution is reasonable.
Source: Guidelines for the Use of Antiretroviral Agents in HIV-Infected Adults and Adolescents, USPHS.


There is a small but definite risk to health care workers of acquiring HIV infection via needle stick exposures, large mucosal surface exposures, or exposure of open wounds to HIV-infected secretions or blood products. The risk of HIV transmission after a skin puncture by an object contaminated with blood from a person with documented HIV infection is ~0.3%, compared with a 20–30% risk for hepatitis B infection from a similar incident. Postexposure prophylaxis may be effective in decreasing the likelihood of acquisition of infection through accidental exposure in the health care setting. In this regard, a U.S. Public Health Service working group has recommended that chemoprophylaxis be given as soon as possible after occupational exposure. While the precise regimen remains a subject of debate, the U.S. Public Health Service guidelines recommend a combination of two nucleoside analogue reverse transcriptase inhibitors plus a third drug given for 4 weeks for high-risk or otherwise complicated exposures. Regardless of which regimen is used, treatment should be initiated as soon as possible after exposure and take into count any available resistance data on the infecting virus.

Prevention of exposure is the best strategy and includes following universal precautions and proper handling of needles and other potentially contaminated objects.

Transmission of TB is another potential risk for all health care workers, including those dealing with HIV-infected pts. All workers should know their PPD status, which should be checked yearly.


A clinical trial conducted in Thailand demonstrated moderate (31% effective) protection against acquisition of HIV infection. However, this modest degree of efficacy does not justify deployment of the vaccine; active investigation continues in the pursuit of a safe and effective vaccine against HIV, including focusing on the induction of broadly neutralizing antibodies to HIV.


Education, counseling, and behavior modification along with the consistent and correct use of condoms in risk situations remain the cornerstones of HIV prevention efforts. Avoidance of shared needle use by injection drug users (IDUs) is critical. If possible, breast-feeding should be avoided by HIV-positive women, as the virus can be transmitted to infants via this route. In societies where withholding of breast-feeding is not feasible, treatment of the mother, if possible, greatly decreases the chances of transmission. Recent studies have demonstrated the important role of medically supervised adult male circumcision in the prevention of acquisition of heterosexually transmitted HIV infection in men. In addition, pre-exposure prophylaxis with cART in men who have sex with men and in heterosexual men and women engaging in risk behaviors, has proven to be an effective means of prevention. Finally, treatment of the HIV-infected partner in heterosexual discordant couples has proved highly effective in preventing transmission of HIV to the uninfected partner.

For a more detailed discussion

For a more detailed discussion, see Fauci AS, Lane HC: Human Immunodeficiency Virus Disease: AIDS and Related Disorders, Chap. 226, p. 1215, in HPIM-19.

HIV Infection and AIDS is a sample topic from the Harrison's Manual of Medicine.

To view other topics, please or purchase a subscription.

Harrison’s Manual of Medicine 19th edition provides 600+ internal medicine topics in a rapid-access format. Download Harrison’s App to iPhone, iPad, and Android smartphone and tablet. Learn more.


TY - ELEC T1 - HIV Infection and AIDS ID - 623018 PB - Harrison's Manual of Medicine UR - https://www.unboundmedicine.com/medline/view/Harrisons-Manual-of-Medicine/623018/all/HIV_Infection_and_AIDS ER -